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Background 

•  Popular big data trend 
– Shared-nothing clusters of servers 
– Distributed storage and processing 
– Great for jobs that parallelize easily 

•  E.g., count the number of documents containing 
some string 

– But data-intensive jobs require data migration 



Background 

•  CoHadoop [VLDB 2011, El-Tabakh et. al.] 
– User can give file co-location hints 

•  Our Goal 
– Given the query workload, can we 

automatically place the data on a computing 
cluster to minimize data transfer cost? 



Problem Statement 

•  m queries, Q_1 through Q_m 
•  n tables, T_1 through T_n,  

–  then ith table having size w_i 
•  A query requires one or more tables 
•  For each Q_i and T_j required by Q_i, a 

data transfer volume C_ij 



Problem Statement 

•  In general, 
– Table = data item, file, table partition, etc. 
– Query = anything that processes data, etc. 



Problem Statement 
•  k servers, S_1 through S_k,  

–  the jth server having storage capacity s_j and 
processing capacity p_j 

•  Every query runs on a server 
–  copies the data it needs to its server  
–  does some processing 

•  Every table is stored on a server 
–  we’ll get to replication later 



Problem Statement 

•  Assign each query and table to a server in 
a way that 
– minimizes the the total data transfer cost 

during query execution 
– and does not violate the server storage and 

processing capacities 



Assumptions 

•  Storage capacity of any one server < 
sum(w_i), the total size of the tables 

•  Processing capacity of any one server < m 
(the number of queries) 

•  Otherwise, just use one server, and data 
transfer cost = 0 

•  Queries are data-intensive 



Solution #1 

•  Formulate an optimization problem and 
solve it using CPLEX 
– Extremely slow due to complexity of the 

problem (NP-hard, as we prove in the paper) 
 



Solution #2 

•  Compute an approximate solution 
•  Reduce our problem to graph partitioning 

– Still NP-hard but efficient approximation 
algorithms exist 

– E.g., METIS 
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Bipartite Graph Partitioning 
•  Queries on the left 
•  Tables on the right 
•  Each query node has 

processing weight 1 
•  Each table node has 

storage weight w_i 
•  Each edge from Q_i to 

T_j has weight C_ij 
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Reduction to Graph 
Partitioning 

•  Partition the query graph: 
–  Into k parts 
– Each with sum(w_i) <= server storage 

capacity and num. queries <= server 
processing capacity 

– To minimize the weight of the cut edges 
•  Claim: this reduction solves our problem 
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Previous Work 

•  OLTP setting: minimize the number of 
distributed transactions [VLDB 2010, 
Curino et. al.] 

•  Modeled as hypergraph partitioning 
– More general than graph partitioning à worse 

performance 



Hypergraph Partitioning 
•  Tables are nodes 
•  Queries are hyperedges 
•  Cost of cutting a hyperedge = 1 

T1 

T5 

Q1 

T2 
T6 

Q2 

T4 

Q3 
T3 

Q4 

Q1 

Q2 

Q3 

Q4 

T1 

T2 

T3 

T4 

T5 

T6 



Replication 

•  What if we store up to or exactly r copies 
of each table? 

•  Optimization program gets even more 
complex and slow 

•  We propose 2 algorithms using graph 
partitioning as a subroutine 



Algorithm #1 

•  Pretend the server capacities are s_i/r and 
p_i/r 

•  Run graph partitioning once 
– Place one copy of each table 

•  Randomly permute the servers 
– Place second copy of each table 

•  … 



Problem with Algorithm #1 

•  Some tables may end up with < r copies 
•  E.g.,  

– 1-2-3-4-5-6-7-8 
– 1-7-5-6-2-8-4-3 
– 5-3-1-8-6-7-4-2 



Algorithm #2 
•  Partition servers into r groups 
•  Run graph partitioning using the first group of k/r 

servers 
•  Remove the m/r cheapest queries 
•  Run graph partitioning using the second group of 

k/r servers 
–  Repeat with ALL tables but only the remaining queries 

•  Remove the m/r cheapest queries 
•  … 



Experimental Results 

•  Optimization program solved by CPLEX 
vs. graph partitioning solved by METIS vs. 
simple heuristic 
– Using a workload similar to TPC-DS (24 

tables, 99 queries) 
•  Scalability experiments using very large 

random query graphs 



Sample Results 
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Scalability 
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See Paper For 

•  Replication algorithm #2 is better 
•  Extension to complex workflows 

–  Intermediate results 



Summary 

•  Careful data placement is necessary when 
running data-intensive queries on a cluster 

•  Provided data placement algorithms via 
graph partitioning 

•  Future work: combine table/query 
partitioning with data placement 


