Optimizing Data Placement
for Distributed Computation

UNIVERSITY OF

WATERLOO
uuuuuu loo.ca L ukasz Golab

N /

Based on

* Lukasz Golab, Marios Hadjieleftheriou
(AT&T), Howard Karloff (Yahoo), Barna
Saha (AT&T), Distributed data placement
to minimize communication costs via
graph partitioning, SSDBM 2014

* Available at
www.engineering.uwaterloo.ca/~Igolab

WATERLOO
k =

Background

* Popular big data trend
— Shared-nothing clusters of servers
— Distributed storage and processing

— Great for jobs that parallelize easily

* E.g., count the number of documents containing
some string

— But data-intensive jobs require data migration

WATERLOO
x =

Background

 CoHadoop [VLDB 2011, El-Tabakh et. al.]
— User can give file co-location hints

 Qur Goal

— Given the query workload, can we
automatically place the data on a computing
cluster to minimize data transfer cost?

WATERLOO
x =

Problem Statement

* m queries, Q_1 through Q_m
* ntables, T _1through T n,
— then ith table having size w_|
* A query requires one or more tables

« Foreach Q iand T_jrequired by Q i, a
data transfer volume C_ij

WATERLOO
x =

Problem Statement

* In general,
— Table = data item, file, table partition, etc.
— Query = anything that processes data, etc.

WATERLOO
k =

Problem Statement

« kservers, S 1through S Kk,

— the jth server having storage capacity s _j and
processing capacity p_j

* Every query runs on a server

— copies the data it needs to its server
— does some processing

* Every table is stored on a server
— we'll get to replication later

WATERLOO
k =

Problem Statement

* Assign each query and table to a server in
a way that

— minimizes the the total data transfer cost
during query execution

— and does not violate the server storage and
processing capacities

WATERLOO
x =

Assumptions

« Storage capacity of any one server <
sum(w_1), the total size of the tables

* Processing capacity of any one server <m
(the number of queries)

* Otherwise, just use one server, and data
transfer cost =0

 Queries are data-intensive

WATERLOO
x =

Solution #1

* Formulate an optimization problem and
solve it using CPLEX

— Extremely slow due to complexity of the
problem (NP-hard, as we prove in the paper)

WATERLOO
k =

Solution #2

« Compute an approximate solution

* Reduce our problem to graph partitioning

— Still NP-hard but efficient approximation
algorithms exist

—E.g., METIS

WATERLOO

Example

UNIVERSITY OF

WATERLOO

Bipartite Graph Partitioning

Queries on the left
Tables on the right

Each query node has
processing weight 1

« Each table node has
storage weight w_|

 Each edge from Q _ito
T_j has weight C_ij

WATERLOO
X,

3 Q'%E
1

Reduction to Graph
Partitioning

 Partition the query graph:
— Into k parts

— Each with sum(w _i) <= server storage
capacity and num. queries <= server
processing capacity

— To minimize the weight of the cut edges
« Claim: this reduction solves our problem

WATERLOO
x =

UNIVERSITY OF
WATERLOO

Previous Work

* OLTP setting: minimize the number of
distributed transactions [VLDB 2010,
Curino et. al.]

* Modeled as hypergraph partitioning

— More general than graph partitioning > worse
performance

WATERLOO

x =

Hypergraph Partitioning

 Tables are nodes
* Queries are hyperedges
» Cost of cutting a hyperedge = 1

WATERLOO
—___

Replication

* What if we store up to or exactly r copies
of each table”?

» Optimization program gets even more
complex and slow

* We propose 2 algorithms using graph
partitioning as a subroutine

WATERLOO

x =

Algorithm #1

* Pretend the server capacities are s_i/r and
p_ilr

 Run graph partitioning once
— Place one copy of each table

 Randomly permute the servers
— Place second copy of each table

WATERLOO
3 =

Problem with Algorithm #1

« Some tables may end up with < r copies
- E.g.,

—1-2-3-4-5-6-7-8

— 1-7-5-6-2-8-4-3

— 5-3-1-8-6-7-4-2

WATERLOO
k =

Algorithm #2

« Partition servers into r groups

* Run graph partitioning using the first group of k/r
servers

« Remove the m/r cheapest queries

* Run graph partitioning using the second group of
k/r servers
— Repeat with ALL tables but only the remaining queries

 Remove the m/r cheapest queries

WATERLOO
3 =

Experimental Results

* Optimization program solved by CPLEX
vs. graph partitioning solved by METIS vs.
simple heuristic

— Using a workload similar to TPC-DS (24
tables, 99 queries)

» Scalability experiments using very large
random query graphs

WATERLOO
x =

Sample Results

* 8 servers 16 servers
17000 - Metis Heuristic CPLEX
§12000 ¥
T2 131 141 151
Server CapaCIty 17500 - Metis Heuristic CPLEX
512500 3

7500

100 110 120 130

Server capacity
UNIVERSITY OF
WATERLOO
X =

Scalability

* number of queries: 1000-16000
 number of tables: 1000-16000

Queries Tables
s00 .~ 1000-1000 —6—1000-2000 400 " 1000-8000 2000-8000
1000-4000 1000-8000 4000-8000 8000-8000

,400 F- -—%—1000-16000 " —+—16000-8000
o) o
g300 T §200 | =
8200 | 3 =
97} wnn

100+ A/jzdﬁ =

0 . 2 T L 1 ' 1 1 J 0 1 1 1 1 1 J
4 8 16b] 32 64 128 4 8 16 32 64 128
Number of servers Number of servers
— ——
600 - ——q ——3 16 400 3 ; o
32 —— 64 —=—128
32 —— 64 —=—128 300 |
———————8%
$400 | < —
S 8200 [A
3200 F A
3 100 o —
0 b———————— 1 _ I) 0 I L I L _ L 1)
1000 2000 4000 8000 16000 1000 2000 4000 8000 16000
Number of queries Number of tables

UNIVERSITY OF

WATERLOO

See Paper For

* Replication algorithm #2 is better

» Extension to complex workflows
— Intermediate results

WATERLOO
k =

Summary

» Careful data placement is necessary when
running data-intensive queries on a cluster

* Provided data placement algorithms via
graph partitioning

* Future work: combine table/query
partitioning with data placement

WATERLOO
x =

