
Optimizing Data Placement
for Distributed Computation

Lukasz Golab

Based on

•  Lukasz Golab, Marios Hadjieleftheriou
(AT&T), Howard Karloff (Yahoo), Barna
Saha (AT&T), Distributed data placement
to minimize communication costs via
graph partitioning, SSDBM 2014

•  Available at
www.engineering.uwaterloo.ca/~lgolab

Background

•  Popular big data trend
– Shared-nothing clusters of servers
– Distributed storage and processing
– Great for jobs that parallelize easily

•  E.g., count the number of documents containing
some string

– But data-intensive jobs require data migration

Background

•  CoHadoop [VLDB 2011, El-Tabakh et. al.]
– User can give file co-location hints

•  Our Goal
– Given the query workload, can we

automatically place the data on a computing
cluster to minimize data transfer cost?

Problem Statement

•  m queries, Q_1 through Q_m
•  n tables, T_1 through T_n,

–  then ith table having size w_i
•  A query requires one or more tables
•  For each Q_i and T_j required by Q_i, a

data transfer volume C_ij

Problem Statement

•  In general,
– Table = data item, file, table partition, etc.
– Query = anything that processes data, etc.

Problem Statement
•  k servers, S_1 through S_k,

–  the jth server having storage capacity s_j and
processing capacity p_j

•  Every query runs on a server
–  copies the data it needs to its server
–  does some processing

•  Every table is stored on a server
–  we’ll get to replication later

Problem Statement

•  Assign each query and table to a server in
a way that
– minimizes the the total data transfer cost

during query execution
– and does not violate the server storage and

processing capacities

Assumptions

•  Storage capacity of any one server <
sum(w_i), the total size of the tables

•  Processing capacity of any one server < m
(the number of queries)

•  Otherwise, just use one server, and data
transfer cost = 0

•  Queries are data-intensive

Solution #1

•  Formulate an optimization problem and
solve it using CPLEX
– Extremely slow due to complexity of the

problem (NP-hard, as we prove in the paper)

Solution #2

•  Compute an approximate solution
•  Reduce our problem to graph partitioning

– Still NP-hard but efficient approximation
algorithms exist

– E.g., METIS

Example

T3

Q1

Q2

Q3

Q4

T1

T2

T3

T4

T5
T6

2

2

2

2

1

1

T5
T6

S3

T1

T4

S2

T2

S1

Q3 Q1 Q4 Q2

Bipartite Graph Partitioning
•  Queries on the left
•  Tables on the right
•  Each query node has

processing weight 1
•  Each table node has

storage weight w_i
•  Each edge from Q_i to

T_j has weight C_ij

Q1

Q2

Q3

Q4

T1

T2

T3

T4

T5

T6

Reduction to Graph
Partitioning

•  Partition the query graph:
–  Into k parts
– Each with sum(w_i) <= server storage

capacity and num. queries <= server
processing capacity

– To minimize the weight of the cut edges
•  Claim: this reduction solves our problem

Example

Q1

Q2

Q3

Q4

T1

T2

T3

T4

T5

T6

T3

T5
T6

S3

T1

T4

S2

T2

S1

Q3 Q1 Q4 Q2

Previous Work

•  OLTP setting: minimize the number of
distributed transactions [VLDB 2010,
Curino et. al.]

•  Modeled as hypergraph partitioning
– More general than graph partitioning à worse

performance

Hypergraph Partitioning
•  Tables are nodes
•  Queries are hyperedges
•  Cost of cutting a hyperedge = 1

T1

T5

Q1

T2
T6

Q2

T4

Q3
T3

Q4

Q1

Q2

Q3

Q4

T1

T2

T3

T4

T5

T6

Replication

•  What if we store up to or exactly r copies
of each table?

•  Optimization program gets even more
complex and slow

•  We propose 2 algorithms using graph
partitioning as a subroutine

Algorithm #1

•  Pretend the server capacities are s_i/r and
p_i/r

•  Run graph partitioning once
– Place one copy of each table

•  Randomly permute the servers
– Place second copy of each table

•  …

Problem with Algorithm #1

•  Some tables may end up with < r copies
•  E.g.,

– 1-2-3-4-5-6-7-8
– 1-7-5-6-2-8-4-3
– 5-3-1-8-6-7-4-2

Algorithm #2
•  Partition servers into r groups
•  Run graph partitioning using the first group of k/r

servers
•  Remove the m/r cheapest queries
•  Run graph partitioning using the second group of

k/r servers
–  Repeat with ALL tables but only the remaining queries

•  Remove the m/r cheapest queries
•  …

Experimental Results

•  Optimization program solved by CPLEX
vs. graph partitioning solved by METIS vs.
simple heuristic
– Using a workload similar to TPC-DS (24

tables, 99 queries)
•  Scalability experiments using very large

random query graphs

Sample Results

•  8 servers 16 servers

7000

12000

17000

C
os

t

Metis Heuristic CPLEX

7500

12500

17500

C
os

t

Metis Heuristic CPLEX Server capacity

Server capacity

121 131 141 151

100 110 120 130

Scalability

0
100
200
300
400
500

4 8 16 32 64 128

Se
co

nd
s

Number of servers

1000-1000 1000-2000
1000-4000 1000-8000
1000-16000

0

200

400

600

1000 2000 4000 8000 16000

Se
co

nd
s

Number of queries

4 8 16
32 64 128

0

200

400

4 8 16 32 64 128

Se
co

nd
s

Number of servers

1000-8000 2000-8000
4000-8000 8000-8000
16000-8000

0

100

200

300

400

1000 2000 4000 8000 16000

Se
co

nd
s

Number of tables

4 8 16
32 64 128

•  number of queries: 1000-16000
•  number of tables: 1000-16000

Queries Tables

See Paper For

•  Replication algorithm #2 is better
•  Extension to complex workflows

–  Intermediate results

Summary

•  Careful data placement is necessary when
running data-intensive queries on a cluster

•  Provided data placement algorithms via
graph partitioning

•  Future work: combine table/query
partitioning with data placement

