Succinct Data Structures

Luís M. S. Russo

Data Storm Big Data Summer School 2014

Luís M. S. Russo Succinct Data Structures

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

Outline

Motivation

- Trees take too much space
- Suffix Trees
- Compressed Representations
- 2 FCST Representation
 - Performance
 - The kernel Operations
 - Further Operations

3 Conclusions

Summary

(4) (3) (4) (4) (4)

< 回 > < 回 > < 回 >

Implementing trees with pointers

typedef struct node {
Item item;
struct node *1;
struct node *r;
} *link;

Requires 2 x 32 bits per nodeor 2 x 64, on 64 bit machine

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

2

Implementing trees with pointers

typedef struct node {
Item item;
struct node *1;
struct node *r;
} *link;

• Requires 2 x 32 bits per node

or 2 x 64, on 64 bit machine

Implementing trees with pointers

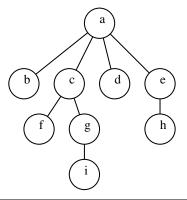
```
typedef struct node {
Item item;
struct node *1;
struct node *r;
} *link;
```

- Requires 2 x 32 bits per node
- or 2 x 64, on 64 bit machine

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

Succinct Data Structures

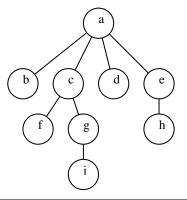
- Representantions that require optimal space.
- What is the minimal number of bits to represent a tree?
- With 2 bits per node, using parenthesis.
- (a(b)(c(f)(g(i))(d)(e(h)))



□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

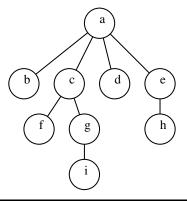
Succinct Data Structures

- Representantions that require optimal space.
- What is the minimal number of bits to represent a tree?
- With 2 bits per node, using parenthesis.
- (a(b)(c(f)(g(i))(d)(e(h)))



Succinct Data Structures

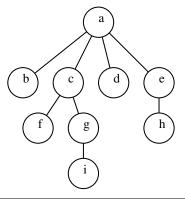
- Representantions that require optimal space.
- What is the minimal number of bits to represent a tree?
- With 2 bits per node, using parenthesis.
- (a(b)(c(f)(g(i))(d)(e(h)))



□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

Succinct Data Structures

- Representantions that require optimal space.
- What is the minimal number of bits to represent a tree?
- With 2 bits per node, using parenthesis.
- (a(b)(c(f)(g(i))(d)(e(h)))



▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

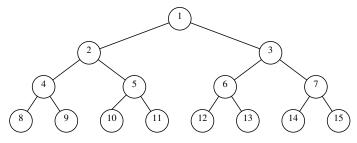
Succinct Data Structures

• We still want to navigate to child and parent.

• Recall heaps.

Succinct Data Structures

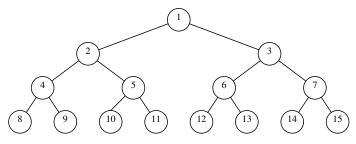
- We still want to navigate to child and parent.
- Recall heaps.
- Child(i) = 2i ; Parent(i) = i/2 ;



イロト イヨト イヨト イヨト

Succinct Data Structures

- We still want to navigate to child and parent.
- Recall heaps.
- Child(i) = 2i ; Parent(i) = i/2 ;



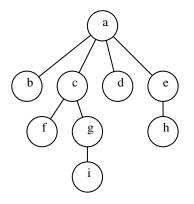
▲□ ▶ ▲ □ ▶ ▲ □

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

르

Succinct Data Structures

- Level-Order Unary Degree Sequence (LOUDS) representation
- 1a01111b0c011d0e01f0g01h0i0
- Store only the bits, not the letters.

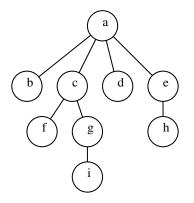


回 とうほとう モン・

크

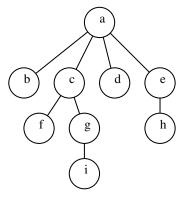
Succinct Data Structures

- Level-Order Unary Degree Sequence (LOUDS) representation
- 1a01111b0c011d0e01f0g01h0i0
- Store only the bits, not the letters.



LOUDS

- 1a01111b0c011d0e01f0g01h0i0
- parent(i) = select1(rank0(i)) ; child = select0(rank1(i)) ;
- rank1 counts the numbers of 1's
- select1 finds the *i*-th 1.



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Rank and Select

Rank and select can be computed efficiently.

For Rank use sparse arrays for higher bits.

Bitmap	1	Ö	1	1	1	1	Õ	0	1	1	0	0	1	0	0
Rank1	1	1	2	3	4	5	5	5	6	7	7	7	8	8	8
HiBits	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

- Hence Rank can be computed in O(1) in n + o(n) bits.
- Select can also be computed in O(1).
- Binary searches are used in practice, $O(\log n)$ time.
- Rank and Select are the building blocks of Succinct Data Structures.

Rank and Select

Rank and select can be computed efficiently.

For Rank use sparse arrays for higher bits.

Bitmap	1	0	1	1	1	1	Õ	0	1	1	0	0	1	0	0
Rank1	1	1	2	3	4	5	5	5	6	7	7	7	8	8	8
HiBits	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

- Hence Rank can be computed in O(1) in n + o(n) bits.
- Select can also be computed in O(1).
- Binary searches are used in practice, *O*(log *n*) time.
- Rank and Select are the building blocks of Succinct Data Structures.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Rank and Select

Rank and select can be computed efficiently.

For Rank use sparse arrays for higher bits.

Bitmap	1	0	1	1	1	1	Õ	0	1	1	0	0	1	0	0
Rank1	1	1	2	3	4	5	5	5	6	7	7	7	8	8	8
HiBits	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

- Hence Rank can be computed in O(1) in n + o(n) bits.
- Select can also be computed in O(1).
- Binary searches are used in practice, $O(\log n)$ time.
- Rank and Select are the building blocks of Succinct Data Structures.

A (10) + A (10) +

Rank and Select

Rank and select can be computed efficiently.

For Rank use sparse arrays for higher bits.

Bitmap	1	0	1	1	1	1	Õ	0	1	1	0	0	1	0	0
Rank1	1	1	2	3	4	5	5	5	6	7	7	7	8	8	8
HiBits	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

- Hence Rank can be computed in O(1) in n + o(n) bits.
- Select can also be computed in O(1).
- Binary searches are used in practice, $O(\log n)$ time.
- Rank and Select are the building blocks of Succinct Data Structures.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ .

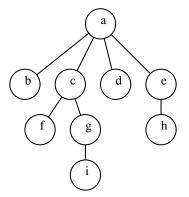
▲帰▶ ▲ 国▶ ▲ 国▶

르

Lowest Common Ancestor

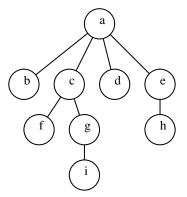
• LOUDS is a functional tree representation.

• How about fancier operations ? Lowest Common Ancestors.



Lowest Common Ancestor

- LOUDS is a functional tree representation.
- How about fancier operations ? Lowest Common Ancestors.

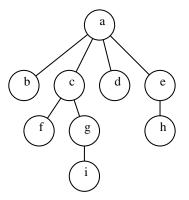


▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

르

Lowest Common Ancestor

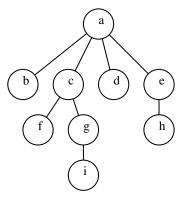
- Let us go back to balanced parenthesis.
- (a(b)(c(f)(g(i))(d)(e(h)))
- 1a2b12c3f23g4i3212d12e3h210



<回とくほとくほと = ほ

Lowest Common Ancestor

- Reduce LCA to the minimum in an interval
- (a(b)(c([f)(g(i]))(d)(e(h)))
- 1a2b12c3[f23g4i]3212d12e3h210



▲御▶ ▲臣▶ ▲臣▶ 三臣

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

- Preprocess a sequence, and find interval minimum in O(1)
- 12123[234]3212123210
- Using an O(n²) table, too much space
- Scanning, too slow.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

- Preprocess a sequence, and find interval minimum in O(1)
- 12123[234]3212123210
- Using an $O(n^2)$ table, too much space
- Scanning, too slow.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Preprocess a sequence, and find interval minimum in O(1)
- 12123[234]3212123210
- Using an $O(n^2)$ table, too much space
- Scanning, too slow.

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Range Minimum Queries

• Use a table for queries of size 2^{*i*}.

• Takes $O(n \log^2 n)$ bits, and O(1) query time.

• Drop $O(\log n)$ factors by sampling.

S	1	2	1	2	3	2	3	4	3	2	1	2	1	2	3	2	1	0
2	1	1	1	2	2	2	3	3	2	1	1	1	1	2	2	1	0	(
4	1	1	1	2	2	2	2	1	1	1	1	1	1	1	0	0	0	(
8	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	(

▲御▶ ▲理▶ ▲理▶

크

Range Minimum Queries

- Use a table for queries of size 2^{*i*}.
- Takes $O(n \log^2 n)$ bits, and O(1) query time.

• Drop $O(\log n)$ factors by sampling.

S	1	2	1	2	3	2	3	4	3	2	1	2	1	2	3	2	1	0
2	1	1	1	2	2	2	3	3	2	1	1	1	1	2	2	1	0	(
4	1	1	1	2	2	2	2	1	1	1	1	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

▲□ → ▲ □ → ▲ □ →

- Use a table for queries of size 2^{*i*}.
- Takes $O(n \log^2 n)$ bits, and O(1) query time.
- Drop $O(\log n)$ factors by sampling.

S	1	2	1	2	3	2	3	4	3	2	1	2	1	2	3	2	1	C
2	1	1	1	2	2	2	3	3	2	1	1	1	1	2	2	1	0	(
4	1	1	1	2	2	2	2	1	1	1	1	1	1	1	0	0	0	(
8	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	(

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Suffix Trees are Important

Suffix trees are important for several string problems:

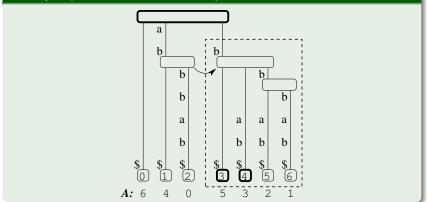
- pattern matching
- longest common substring
- super maximal repeats
- bioinformatics applications
- etc

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

æ

Suffix Trees are Important

Example (Suffix Tree for *abbbab*)



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ .

Representation Problems

Problem (Suffix Trees need too much space)

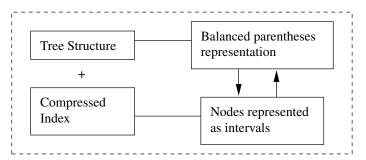
Pointer based representations require $O(n \log n)$ bits.

This is much larger than the indexed string. State of the art implementations require $[8, 10]n \times 32$ bits.

Compressed Representations

Sadakane proposed a new way to represent suffix trees.

Compressed Suffix Tree



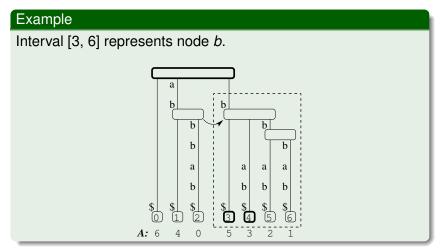
▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

æ

Node Representation

A node represented as an interval of leaves of a suffix tree.



< 同 > < 回 > < 回 > <

Compressed Indexes

Compressed indexes are compressed representations of the leaves of a suffix tree. Their success relies on:

- Succinct structures, based on RANK and SELECT.
- Data compression, that represent T in $O(uH_k)$ bits.

Examples

FM-index, Compressed Suffix Arrays, LZ-index, etc.

Sadakane used compressed suffix arrays. We need a compressed index that supports ψ and LF. For example the Alphabet-Friendly FM-Index.

× ×

Overall Performance

$\sigma = O(\operatorname{polylog}(n))$		
	Sadakane's	FCST
Space in bits	$nH_k + \frac{6n}{6} + o(n\log\sigma)$	$nH_k + o(n\log\sigma)$
SDEP/LOCATE	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
COUNT/ANCESTOR	1	1
PARENT/FCHILD/	1	log <i>n</i> log log <i>n</i>
SLINK	1	log <i>n</i> log log <i>n</i>
SLINK ⁱ	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
Letter(v, i)	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
LCA	1	log <i>n</i> log log <i>n</i>
CHILD	(log log n) log n	$(\log \log n)^2 \log_{\sigma} n$
TDEP	1	$(\log n \log \log n)^2$
TLAQ	1	$(\log n \log \log n)^2$
SLAQ	_	log n log log n
WeinerLink	1	1

``

Overall Performance

$\sigma = O(\operatorname{polylog}(n))$		
	Sadakane's	FCST
Space in bits	$nH_k + \frac{6n}{6} + o(n\log\sigma)$	$nH_k + o(n\log\sigma)$
SDEP/LOCATE	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
COUNT/ANCESTOR	1	1
PARENT/FCHILD/	1	log <i>n</i> log log <i>n</i>
SLINK	1	log <i>n</i> log log <i>n</i>
SLINK ⁱ	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
Letter(v, i)	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
LCA	1	log <i>n</i> log log <i>n</i>
CHILD	(log log n) log n	$(\log \log n)^2 \log_{\sigma} n$
TDEP	1	$(\log n \log \log n)^2$
TLAQ	1	$(\log n \log \log n)^2$
SLAQ	—	log n log log n
WeinerLink	1	1

Luís M. S. Russo Succinct Data Structures

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

``

Overall Performance

$\sigma = O(\operatorname{polylog}(n))$		
	Sadakane's	FCST
Space in bits	$nH_k + \frac{6n}{6} + o(n\log\sigma)$	$nH_k + o(n\log\sigma)$
SDEP/LOCATE	log <i>n</i> log log <i>n</i>	log n log log n
COUNT/ANCESTOR	1	1
PARENT/FCHILD/	1	log <i>n</i> log log <i>n</i>
SLINK	1	log n log log n
SLINK ⁱ	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
Letter(v, i)	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
LCA	1	log <i>n</i> log log <i>n</i>
Child	(log log n) log n	$(\log \log n)^2 \log_{\sigma} n$
TDEP	1	$(\log n \log \log n)^2$
TLAQ	1	$(\log n \log \log n)^2$
SLAQ	_	log n log log n
WeinerLink	1	1

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

``

Overall Performance

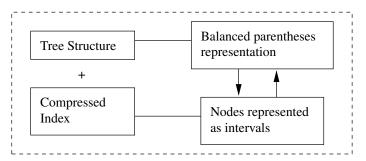
$\sigma = O(\operatorname{polylog}(n))$		
	Sadakane's	FCST
Space in bits	$nH_k + \frac{6n}{6} + o(n\log\sigma)$	$nH_k + o(n\log\sigma)$
SDEP/LOCATE	log <i>n</i> log log <i>n</i>	log n log log n
COUNT/ANCESTOR	1	1
PARENT/FCHILD/	1	log n log log n
SLINK	1	log n log log n
SLINK ⁱ	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
Letter(v, i)	log <i>n</i> log log <i>n</i>	log <i>n</i> log log <i>n</i>
LCA	1	log <i>n</i> log log <i>n</i>
CHILD	(log log n) log n	$(\log \log n)^2 \log_{\sigma} n$
TDEP	1	$(\log n \log \log n)^2$
TLAQ	1	$(\log n \log \log n)^2$
SLAQ	_	log n log log n
WeinerLink	1	1

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Sampling

We use sampling instead of balanced parentheses.

Compressed Suffix Tree



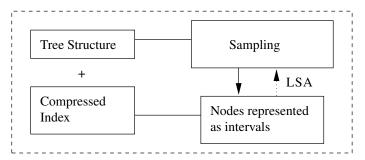
< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Sampling

We use sampling instead of balanced parentheses.

Compressed Suffix Tree



< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

Sampling

The sampling has the property that in any sequence

- V
- SLINK(v)
- SLINK(SLINK(v))
- SLINK(SLINK(SLINK(v)))
- ...

of size δ there is at least one sampled node.

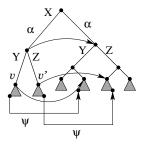
<回><モン<

LCA and SLINK

Lemma

When LCA(v, v') \neq ROOT we have that:

SLINK(LCA(v, v')) = LCA(SLINK(v), SLINK(v'))



Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*)) =
 $\max_{0 \le i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

Proof.

SDep(LCA(v, v')) = i + SDep(SLinkⁱ(LCA(v, v'))) = i + SDep(LCA(SLinkⁱ(v), SLinkⁱ) > i + SDep(LCA(SLinkⁱ(v), SLinkⁱ) > i + SDep(LCSA(SLinkⁱ(v), SLinkⁱ)) = i + SDep(LCSA(SLinkⁱ(v), SLinkⁱ)

The last inequality is an equality for some $i \leq d$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*)) =
 $\max_{0 \le i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

Proof.

$\begin{aligned} &\mathsf{SDEP}(\mathsf{LCA}(v, v')) \\ &= i + \mathsf{SDEP}(\mathsf{SLINK}^i(\mathsf{LCA}(v, v'))) \\ &= i + \mathsf{SDEP}(\mathsf{LCA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \\ &\geq i + \mathsf{SDEP}(\mathsf{LCSA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \end{aligned}$ The last inequality is an equality for some $i \leq d$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*))?
 $\max_{0 \le i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

Proof.

 $\begin{aligned} \mathsf{SDEP}(\mathsf{LCA}(v, v')) \\ &= i + \mathsf{SDEP}(\mathsf{SLINK}^i(\mathsf{LCA}(v, v'))) \\ &= i + \mathsf{SDEP}(\mathsf{LCA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \\ &\geq i + \mathsf{SDEP}(\mathsf{LCSA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \end{aligned}$ The last inequality is an equality for some $i \leq d$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*))?
 $\max_{0 \le i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

Proof.

 $\begin{aligned} \mathsf{SDEP}(\mathsf{LCA}(v,v')) &= i + \mathsf{SDEP}(\mathsf{SLINK}^i(\mathsf{LCA}(v,v'))) \\ &= i + \mathsf{SDEP}(\mathsf{LCA}(\mathsf{SLINK}^i(v),\mathsf{SLINK}^i(v'))) \\ &\geq i + \mathsf{SDEP}(\mathsf{LCSA}(\mathsf{SLINK}^i(v),\mathsf{SLINK}^i(v'))) \end{aligned}$ The last inequality is an equality for some $i \leq d$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*)) $\geq \max_{0 \leq i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

Proof.

 $\begin{aligned} \mathsf{SDEP}(\mathsf{LCA}(v, v')) &= i + \mathsf{SDEP}(\mathsf{SLINK}^i(\mathsf{LCA}(v, v'))) \\ &= i + \mathsf{SDEP}(\mathsf{LCA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \\ &\geq i + \mathsf{SDEP}(\mathsf{LCSA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \end{aligned}$ The last inequality is an equality for some $i \leq d$.

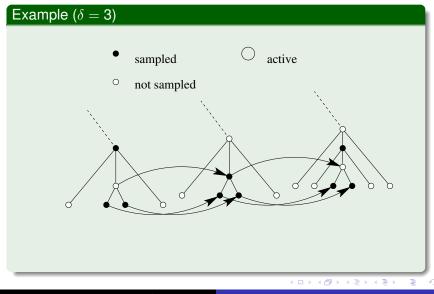
イロト イ理ト イヨト イヨト

Lemma

If SLINK^{*r*}(LCA(*v*, *v'*)) = ROOT, and let
$$d = \min(\delta, r + 1)$$
.
Then SDEP(LCA(*v*, *v'*)) =
 $\max_{0 \le i < d} \{i + \text{SDEP}(\text{LCSA}(\text{SLINK}^{i}(v), \text{SLINK}^{i}(v')))\}$

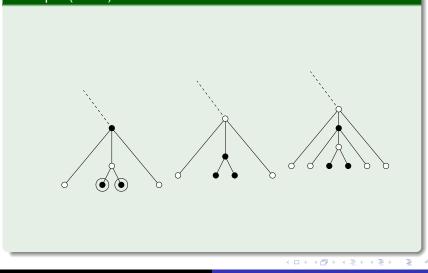
Proof.

 $\begin{aligned} \mathsf{SDEP}(\mathsf{LCA}(v, v')) &= i + \mathsf{SDEP}(\mathsf{SLINK}^i(\mathsf{LCA}(v, v'))) \\ &= i + \mathsf{SDEP}(\mathsf{LCA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \\ &\geq i + \mathsf{SDEP}(\mathsf{LCSA}(\mathsf{SLINK}^i(v), \mathsf{SLINK}^i(v'))) \end{aligned}$ The last inequality is an equality for some $i \leq d$.



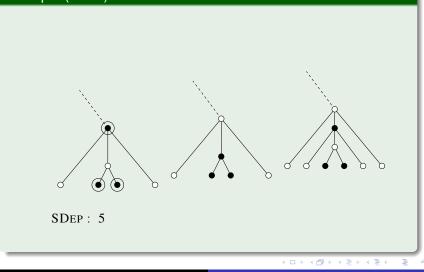
Fundamental lemma

Example ($\delta = 3$)



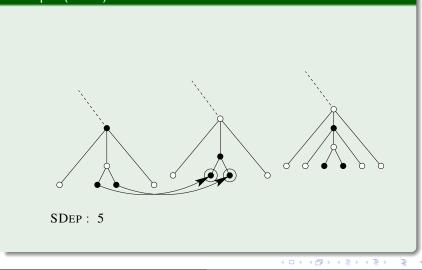
Fundamental lemma

Example ($\delta = 3$)



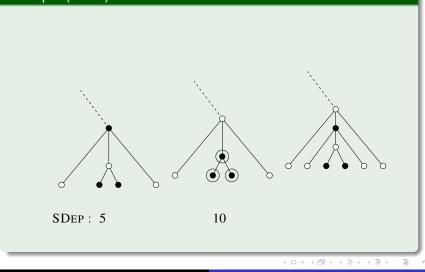
Fundamental lemma

Example ($\delta = 3$)



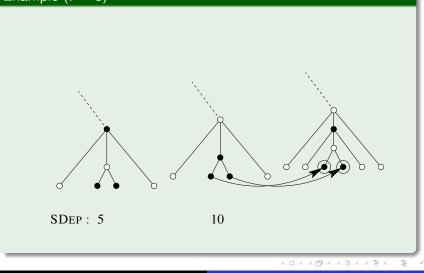
Fundamental lemma

Example ($\delta = 3$)



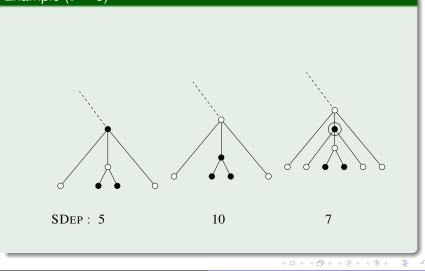
Fundamental lemma

Example ($\delta = 3$)



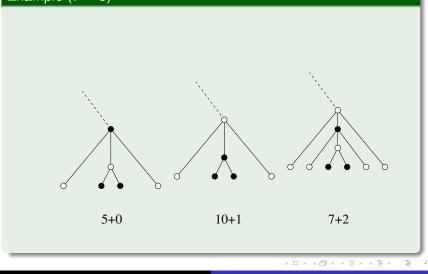
Fundamental lemma

Example ($\delta = 3$)



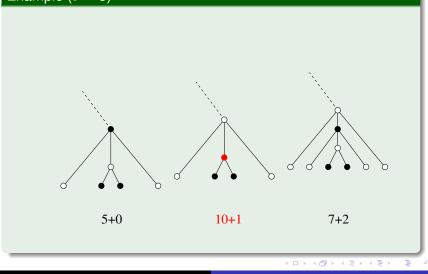
Fundamental lemma

Example ($\delta = 3$)



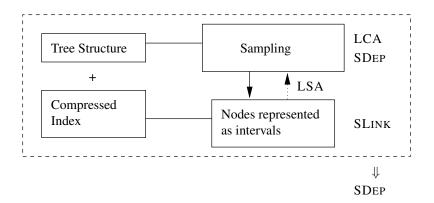
Fundamental lemma

Example ($\delta = 3$)



Entangled Operations

Why is the lemma important ?



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entangled Operations

The lemma allows us to compute other operations:

- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINKⁱ(v) = LCA($\psi^i(v_l), \psi^i(v_r)$).
- LCA(v, v') = LF(v[0..i - 1], $LCSA(SLINK^{i}(v), SLINK^{i}(v'))),$ for the *i* in the lemma.

SLINK depends on LCA and LCA on SLINK.

・ロト ・四ト ・ヨト ・ヨト

Entangled Operations

The lemma allows us to compute other operations:

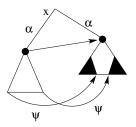
- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINKⁱ(v) = LCA($\psi^i(v_l), \psi^i(v_r)$).
- LCA(v, v') = LF(v[0..i - 1], $LCSA(SLINK^{i}(v), SLINK^{i}(v'))),$ for the *i* in the lemma.

SLINK depends on LCA and LCA on SLINK.

・ロト ・四ト ・ヨト ・ヨト

The lemma allows us to compute other operations:

- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINKⁱ(v) = LCA($\psi^i(v_l), \psi^i(v_r)$).
- LCA(v, v') = LF(v[0..i - 1], $LCSA(SLINK^{i}(v), SLINK^{i}(v')))$ for the *i* in the lemma.



・ロ・ ・ 四・ ・ 回・ ・ 回・

SLINK depends on LCA and LCA on SLINK.

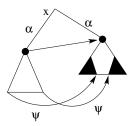
Performance

KOps +Ops

Motivation

The lemma allows us to compute other operations:

- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINK^{*i*}(\boldsymbol{v}) = LCA($\psi^{i}(\boldsymbol{v}_{l}), \psi^{i}(\boldsymbol{v}_{r})$).
- LCA(v, v') =LF(v[0..i - 1]) $LCSA(SLINK^{i}(v), SLINK^{i}(v'))),$ for the *i* in the lemma.



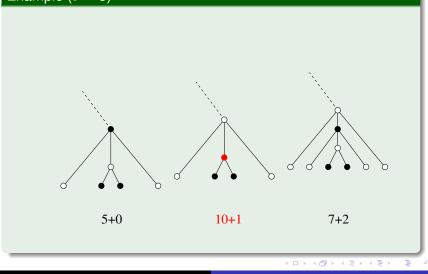
▲冊▶ ▲理▶ ★理≯

Performance

KOps +Ops

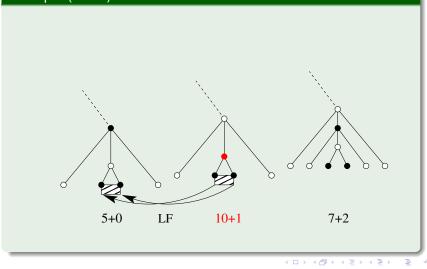
Entangled Operations

Example ($\delta = 3$)



Entangled Operations

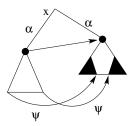
Example ($\delta = 3$)



Motivation

The lemma allows us to compute other operations:

- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINK^{*i*}(\boldsymbol{v}) = LCA($\psi^{i}(\boldsymbol{v}_{l}), \psi^{i}(\boldsymbol{v}_{r})$).
- LCA(v, v') =LF(v[0..i - 1]) $LCSA(SLINK^{i}(v), SLINK^{i}(v'))),$ for the *i* in the lemma.



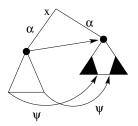
▲冊▶ ▲理▶ ★理≯

Performance

KOps +Ops

The lemma allows us to compute other operations:

- SDEP(v) = SDEP(LCA(v, v)).
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$), SLINKⁱ(v) = LCA($\psi^i(v_l), \psi^i(v_r)$).
- LCA(v, v') = LF(v[0..i - 1], $LCSA(SLINK^{i}(v), SLINK^{i}(v'))),$ for the *i* in the lemma.



• (1) • (1) • (1)

SLINK depends on LCA and LCA on SLINK.

Performance

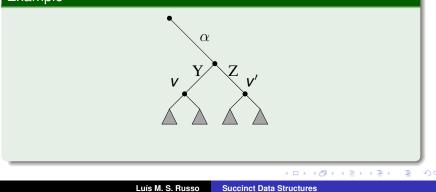
KOps +Ops

To avoid this circular dependency we use the next lemma.

Lemma

$$LCA(v, v') = LCA(\min\{v_l, v_l'\}, \max\{v_r, v_r'\})$$

Example

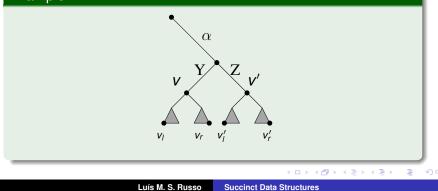


To avoid this circular dependency we use the next lemma.

Lemma

$$LCA(v, v') = LCA(\min\{v_l, v_l'\}, \max\{v_r, v_r'\})$$

Example

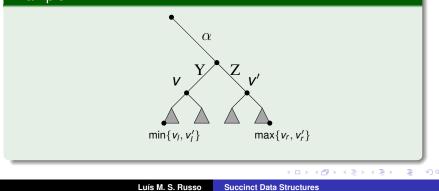


To avoid this circular dependency we use the next lemma.

Lemma

$$LCA(v, v') = LCA(\min\{v_l, v_l'\}, \max\{v_r, v_r'\})$$

Example



Hence we can use ψ instead of SLINK. Therefore LCA no longer depends on SLINK. The following operations simplify:

- SDEP(v) = SDEP(LCA(v, v)) = max_{0≤i<d}{i + SDEP(LCSA(ψⁱ(v_I), ψⁱ(v_r)))}.
- LCA(v, v') = LF(v[0..i - 1], LCSA(ψ^i (min{ v_i, v'_i }), ψ^i (max{ v_r, v'_r }))) for the i in the lemma.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Hence we can use ψ instead of SLINK. Therefore LCA no longer depends on SLINK. The following operations simplify:

- SDEP(v) = SDEP(LCA(v, v)) = max_{0≤i<d}{i + SDEP(LCSA($\psi^i(v_l), \psi^i(v_r)$))}.
- LCA(v, v') = LF(v[0..i - 1], LCSA(ψ^i (min{ v_l, v'_l }), ψ^i (max{ v_r, v'_r }))), for the i in the lemma.

(日) (圖) (E) (E) (E)

Hence we can use ψ instead of SLINK. Therefore LCA no longer depends on SLINK. The following operations simplify:

- SDEP(v) = SDEP(LCA(v, v)) = max_{0≤i<d}{i + SDEP(LCSA($\psi^i(v_l), \psi^i(v_r)$))}.
- LCA(v, v') = LF(v[0..i – 1], LCSA($\psi^{i}(\min\{v_{l}, v'_{l}\}), \psi^{i}(\max\{v_{r}, v'_{r}\}))$), for the i in the lemma.

<ロ> <同> <同> < 同> < 同> < 同> < □> <

With these base operations we can also compute:

• Letter(v, i) = SLinkⁱ(v)[0] = $\psi^{i}(v_{l})$ [0]

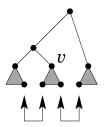
• PARENT is either $LCA(v_l - 1, v_l)$ or $LCA(v_r, v_r + 1)$, whichever is lowest.

・ロト ・四ト ・ヨト ・ヨト

르

With these base operations we can also compute:

- Letter(v, i) = SLinkⁱ(v)[0] = $\psi^{i}(v_{l})$ [0]
- PARENT is either $LCA(v_l - 1, v_l)$ or $LCA(v_r, v_r + 1)$, whichever is lowest.



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• CHILD can be computed with LETTER and binary searches.

- We can also use the fundamental lemma as $CHILD(v, X) = LF(v[0..i - 1], CHILD(SLINK^{i}(v), X))$
- The branching is computed over child lists in the sampled tree.
- We proposed a compromise between these approaches.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- CHILD can be computed with LETTER and binary searches.
- We can also use the fundamental lemma as $CHILD(v, X) = LF(v[0..i - 1], CHILD(SLINK^{i}(v), X))$
- The branching is computed over child lists in the sampled tree.
- We proposed a compromise between these approaches.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- CHILD can be computed with LETTER and binary searches.
- We can also use the fundamental lemma as $CHILD(v, X) = LF(v[0..i - 1], CHILD(SLINK^{i}(v), X))$
- The branching is computed over child lists in the sampled tree.
- We proposed a compromise between these approaches.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Summary

We presented a representation of suffix tree that:

- Occupies $uH_k + o(u \log \sigma)$ bits.
- Supports usual operations in a reasonable time.
- Recently the time was improved by $O(\log n)$.

▲御▶ ▲理▶ ▲理▶

Summary

Practical implementations available.

- https://github.com/simongog/sdsl-lite
- http://www.cs.helsinki.fi/group/suds/cst/
- http://pizzachili.dcc.uchile.cl/

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

3

Acknowledgments

- Thanks for listening.
- Questions ?

イロト イヨト イヨト イヨト

æ