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Implementing trees with pointers

typedef struct node {

Item item;

struct node *l;

struct node *r;

} *link;

Requires 2 x 32 bits per node
or 2 x 64, on 64 bit machine
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Succinct Data Structures

Representantions that require optimal space.
What is the minimal number of bits to represent a tree?
With 2 bits per node, using parenthesis.
(a(b)(c(f)(g(i))(d)(e(h)))

a

b c d e

f g h

i
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Succinct Data Structures

We still want to navigate to child and parent.
Recall heaps.
Child(i) = 2i ; Parent(i) = i/2 ;
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Succinct Data Structures

Level-Order Unary Degree Sequence (LOUDS)
representation
1a01111b0c011d0e01f0g01h0i0
Store only the bits, not the letters.
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LOUDS

1a01111b0c011d0e01f0g01h0i0
parent(i) = select1(rank0(i)) ; child = select0(rank1(i)) ;
rank1 counts the numbers of 1’s
select1 finds the i-th 1.

a

b c d e

f g h

i
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Rank and Select

Rank and select can be computed efficiently.
For Rank use sparse arrays for higher bits.
Bitmap 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0
Rank1 1 1 2 3 4 5 5 5 6 7 7 7 8 8 8
HiBits 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Hence Rank can be computed in O(1) in n + o(n) bits.
Select can also be computed in O(1).
Binary searches are used in practice, O(log n) time.
Rank and Select are the building blocks of Succinct Data
Structures.

Luı́s M. S. Russo Succinct Data Structures



Motivation FCST Representation Conclusions The Problem Suffix Trees Compressed Representations

Rank and Select

Rank and select can be computed efficiently.
For Rank use sparse arrays for higher bits.
Bitmap 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0
Rank1 1 1 2 3 4 5 5 5 6 7 7 7 8 8 8
HiBits 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Hence Rank can be computed in O(1) in n + o(n) bits.
Select can also be computed in O(1).
Binary searches are used in practice, O(log n) time.
Rank and Select are the building blocks of Succinct Data
Structures.

Luı́s M. S. Russo Succinct Data Structures



Motivation FCST Representation Conclusions The Problem Suffix Trees Compressed Representations

Rank and Select

Rank and select can be computed efficiently.
For Rank use sparse arrays for higher bits.
Bitmap 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0
Rank1 1 1 2 3 4 5 5 5 6 7 7 7 8 8 8
HiBits 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Hence Rank can be computed in O(1) in n + o(n) bits.
Select can also be computed in O(1).
Binary searches are used in practice, O(log n) time.
Rank and Select are the building blocks of Succinct Data
Structures.

Luı́s M. S. Russo Succinct Data Structures



Motivation FCST Representation Conclusions The Problem Suffix Trees Compressed Representations

Rank and Select

Rank and select can be computed efficiently.
For Rank use sparse arrays for higher bits.
Bitmap 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0
Rank1 1 1 2 3 4 5 5 5 6 7 7 7 8 8 8
HiBits 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Hence Rank can be computed in O(1) in n + o(n) bits.
Select can also be computed in O(1).
Binary searches are used in practice, O(log n) time.
Rank and Select are the building blocks of Succinct Data
Structures.

Luı́s M. S. Russo Succinct Data Structures



Motivation FCST Representation Conclusions The Problem Suffix Trees Compressed Representations

Lowest Common Ancestor

LOUDS is a functional tree representation.
How about fancier operations ? Lowest Common
Ancestors.

a
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Lowest Common Ancestor

Let us go back to balanced parenthesis.
(a(b)(c(f)(g(i))(d)(e(h)))
1a2b12c3f23g4i3212d12e3h210

a

b c d e

f g h

i
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Lowest Common Ancestor

Reduce LCA to the minimum in an interval
(a(b)(c([f)(g(i]))(d)(e(h)))
1a2b12c3[f23g4i]3212d12e3h210

a

b c d e

f g h

i
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Range Minimum Queries

Preprocess a sequence, and find interval minimum in O(1)
12123[234]3212123210
Using an O(n2) table, too much space
Scanning, too slow.
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Range Minimum Queries

Use a table for queries of size 2i .
Takes O(n log2 n) bits, and O(1) query time.
Drop O(log n) factors by sampling.

S 1 2 1 2 3 2 3 4 3 2 1 2 1 2 3 2 1 0
2 1 1 1 2 2 2 3 3 2 1 1 1 1 2 2 1 0 0
4 1 1 1 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
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Suffix Trees are Important

Suffix trees are important for several string problems:
pattern matching
longest common substring
super maximal repeats
bioinformatics applications
etc
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Suffix Trees are Important

Example (Suffix Tree for abbbab)
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Representation Problems

Problem (Suffix Trees need too much space)

Pointer based representations require O(n log n) bits.

This is much larger than the indexed string.
State of the art implementations require [8,10]n × 32 bits.
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Compressed Representations

Sadakane proposed a new way to represent suffix trees.

Tree Structure

Compressed
Index

Balanced parentheses
representation

Nodes represented
as intervals

Compressed Suffix Tree

+
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Node Representation

A node represented as an interval of leaves of a suffix tree.

Example
Interval [3, 6] represents node b.
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Compressed Indexes

Compressed indexes are compressed representations of the
leaves of a suffix tree.
Their success relies on:

Succinct structures, based on RANK and SELECT.
Data compression, that represent T in O(uHk ) bits.

Examples
FM-index, Compressed Suffix Arrays, LZ-index, etc.

Sadakane used compressed suffix arrays.
We need a compressed index that supports ψ and LF.
For example the Alphabet-Friendly FM-Index.
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Overall Performance

σ = O(polylog(n))
Sadakane’s FCST

Space in bits nHk + 6n + o(n logσ) nHk + o(n logσ)
SDEP/LOCATE log n log log n log n log log n
COUNT/ANCESTOR 1 1
PARENT/FCHILD/ 1 log n log log n
SLINK 1 log n log log n
SLINKi log n log log n log n log log n
LETTER(v , i) log n log log n log n log log n
LCA 1 log n log log n
CHILD (log log n) log n (log log n)2 logσ n
TDEP 1 (log n log log n)2

TLAQ 1 (log n log log n)2

SLAQ — log n log log n
WEINERLINK 1 1
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Sampling

We use sampling instead of balanced parentheses.

Tree Structure

Compressed
Index

Balanced parentheses
representation

Nodes represented
as intervals

Compressed Suffix Tree

+

Luı́s M. S. Russo Succinct Data Structures



Motivation FCST Representation Conclusions Performance KOps +Ops

Sampling

We use sampling instead of balanced parentheses.

Tree Structure

Compressed
Index Nodes represented

as intervals

Sampling

LSA

Compressed Suffix Tree

+
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Sampling

The sampling has the property that in any sequence

v
SLINK(v)
SLINK(SLINK(v))
SLINK(SLINK(SLINK(v)))
. . .

of size δ there is at least one sampled node.
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LCA and SLINK

Lemma
When LCA(v , v ′) 6= ROOT we have that:

SLINK(LCA(v , v ′)) = LCA(SLINK(v),SLINK(v ′))

α
α

v’v

X

Y Z
Y Z

ψ

ψ
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Fundamental lemma

Lemma

If SLINKr (LCA(v , v ′)) = ROOT, and let d = min(δ, r + 1).
Then SDEP(LCA(v , v ′)) =

max0≤i<d{i + SDEP(LCSA(SLINKi(v),SLINKi(v ′)))}

Proof.
SDEP(LCA(v , v ′))

= i + SDEP(SLINKi(LCA(v , v ′)))
= i + SDEP(LCA(SLINKi(v),SLINKi(v ′)))
≥ i + SDEP(LCSA(SLINKi(v),SLINKi(v ′)))

The last inequality is an equality for some i ≤ d .
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Fundamental lemma

Example (δ = 3)
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Fundamental lemma

Example (δ = 3)
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Entangled Operations

Why is the lemma important ?

Tree Structure

Compressed
Index Nodes represented

as intervals

Sampling

LSA
+

LCA
SDEP

SLINK

SDEP

⇒
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Entangled Operations

The lemma allows us to compute other operations:

SDEP(v) = SDEP(LCA(v , v)).
SLINK(v) = LCA(ψ(vl), ψ(vr )),
SLINKi(v) = LCA(ψi(vl), ψ

i(vr )).
LCA(v , v ′) =

LF(v [0..i − 1],
LCSA(SLINKi(v),SLINKi(v ′))),

for the i in the lemma.

SLINK depends on LCA and LCA on SLINK.

Luı́s M. S. Russo Succinct Data Structures
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for the i in the lemma.

SLINK depends on LCA and LCA on SLINK.
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Entangled Operations

Example (δ = 3)
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Breaking the Cycle

To avoid this circular dependency we use the next lemma.

Lemma

LCA(v , v ′) = LCA(min{vl , v ′l },max{vr , v ′r})

Example
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Breaking the Cycle

Hence we can use ψ instead of SLINK.
Therefore LCA no longer depends on SLINK.
The following operations simplify:

SDEP(v) = SDEP(LCA(v , v)) =
max0≤i<d{i + SDEP(LCSA(ψi(vl), ψ

i(vr )))}.
LCA(v , v ′) =

LF(v [0..i − 1],
LCSA(ψi(min{vl , v ′l }), ψ

i(max{vr , v ′r}))),
for the i in the lemma.
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Further Operations

With these base operations we can also compute:

LETTER(v , i) = SLINKi(v)[0] =
ψi(vl)[0]

PARENT is either
LCA(vl − 1, vl) or
LCA(vr , vr + 1), whichever is
lowest.
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Further Operations

CHILD can be computed with LETTER and binary searches.
We can also use the fundamental lemma as
CHILD(v ,X ) = LF(v [0..i − 1],CHILD(SLINKi(v),X ))

The branching is computed over child lists in the sampled
tree.
We proposed a compromise between these approaches.
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Summary

We presented a representation of suffix tree that:
Occupies uHk + o(u logσ) bits.
Supports usual operations in a reasonable time.
Recently the time was improved by O(log n).
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Summary

Practical implementations available.

https://github.com/simongog/sdsl-lite

http://www.cs.helsinki.fi/group/suds/cst/

http://pizzachili.dcc.uchile.cl/
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Thanks for listening.
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