Data Stream Management Systems:
An introduction

DATA STORM Big Data Summer School
Lisbon, July 14-16th

Paulo Carreira | IST & INESC-ID

Social VWeb

Smart Buildings

Central Control Room

Smart Cities

Smart Meters

Streaming data

p Arrives out of order
p At varying frequency (sometime bursty)
p Continuously arriving (infinite in nature)

p Transient

Social VWeb

“Which countries re-tweeted my messages the most
over the last 8 hours?”

i

Smart Bmldlngs

“Which rooms are consuming more energy?” W

Smart Cities

“Which neighborhoods have lamps did not start?”

Smart Meters

“Which appliances are consuming most energy?” w

Continuous Queries

p Continually evaluated whenever new information
arrives

p Continually producing updates to their results

i

Streaming Data
Applications

p Finance (real-time trading decisions)
p Fraud detection

p Business Intelligence

p Building Automation

p Assisted Living

p Monitoring

b ..

Outline

I . Motivation
2.Stream Processing Fundamentals
3. Querying Data Streams (by example)
 Output control
* Windowing
* Blocking Operators

e |nsert and Remove Streams

Stream Processing
Fundamentals

Stream Processing Systems

filters

sources

sinks

'
[
H
HE=E3LE
S 1885
Atnolher <
1 streams Q)_u

on

rmat

info

Honeywell Wecome:Fcly Wanager | Lo

Buiding Profle Zo

channels o

- s
o s 2029691 11
UE———— S T T

301 oyl araton .

Several Challenges

Processing many events per second
(thousands to millions)

Running thousands of queries
Detecting very complex event conditions

Minimization of the development effort (to
setup a system that reacts to complex
situations)

Engineering Stream
Processing Software

p Currently Stream Processing software is (still)
developed ad-hoc

p In the 1970s Database Management Systems
detached applications from data storage and
processing logic

p By the 2000s Data Steam Management Systems
promise to detach applications from streaming
data processing logic

Database Management
Systems

Data is
stored;

Queries are
run

Data Stream
Management Systems

' user queries
s Q — G

Queries are
stored;

Data is run

i

Available DSMSs

p Research Systems

- TlelegraphCQ, COUGAR, Borealis, STREAMON

p Commercial
- Oracle |lg RT
- (IBM DB2, Microsoft SQL-Server soon to follow)

p Open Source

- Esper, Twitter Storm, Apache $4, ...

i

DBMS vs DSMS

» DBMS

= Queries are run when submitted and terminate

Data is pulled

- Optimization occurs upfront (minimize 10 effort)

p DSMS
= Queries are installed and run continuously
- Data is pushed

- Optimization is dynamic (minimize latency)

Why are DSMS so great!

p Simplify the design of real-time data
processing applications

p Very efficient at processing a large number of
queries over high data flow rates

= >500K events/sec on dual CPU machine

- 500 queries at an arrival rate of 1000 events/
sec (!)

Challenges

p Unbounded Memory: Queries require an
unbounded amount of memory to evaluate
precisely.

- Approximate query processing
- Sliding window query processing

p High data-flow rate: Data arrives at a pace
(multi-GB) that floods the CPU

- Sampling

- Data synopsis

Querying Data Streams
(by example)

Events and Streams

p Event
- An occurrence within a particular context

- Refers to the real-world event and to its
digital representation (data)

p Stream

- Abstracted as an append-only relation with
transient tuples

- Events on a given stream have similar
structure known upfront

Continuous Queries

p Non-blocking Relational operators extend
naturally to stream processing

- Select, Project, Join are Relational

- Therefore, SQL also extends naturally to
stream processing

p Blocking operators such as Grouping and
Aggregation require specific operators to be
introduced

i

Basic Continuous Query
Block

select col exprl, ..., col exprn
from stream def

where select cond
group by aggr expr
having having cond
order by ordering expr
output output expr

The ‘Hello World" example

The count of withdrawals of amounts greater than 3

select count (amount)
from Withdrawal
where amount > 3

Q

Output control

Output Control

The count of withdrawals of amounts greater than 3, reported at
every two events

select count (amount)
from Withdrawal
where amount > 3
output every 2 events

Output Control

p The output clause specifies, when, how and at
what rate the output is produced

output [after n [seconds | events]]
[[all | first | last | snapshot]

every output rate [seconds | events|]]

Output control

p Output at a fixed rate
The ids of all temperature sensor events every 10 seconds

select sensorId
from TemperatureSensorEvent
output all every 10 seconds

p Partial output at fixed rate

The first of a series temperature drops below 21C a the specified
output rate

select *
from TemperatureSensor where temp<21
output first every 60 seconds

i

Input Control

Windows

EEEEEEEEEEEEE N

P Windows define a processing context that is
updated incrementally

p Type of windows:

- Batch or Sliding

- Based on length, based on time, or both

Window queries

The count of withdrawals of amounts greater than 3, on a
window of size 2, reported at every two events

select count (amount)
Withdrawal.win:length(4)

where amount > 3
output snapshot every 2 events

Windows

p A sliding window definition
Sum of withdrawals over the last 5 seconds

select sum(amount)
from Withdrawal.win:time(5 sec)

p A batch window definition
Sum of withdrawals at each 5 seconds (batch)

select sum(amount)
from Withdrawal.win:time batch(5 sec)

Joins

p Joining two event streams

Which accounts under fraud surveillance have had a withdrawal
in the last 30 seconds?

1. Fraud warning events stream for which we keep the last 30
minutes (1800 seconds).

2. Withdrawal events stream for which we consider the last 30
seconds.

The streams are joined on account number.

select fraud.accountNumber as accntNum,
fraud.warning as warn, withdraw.amount as amount,
from FraudWarningEvent.win:time(1800) as fraud,
WithdrawalEvent.win:time(30) as withdraw
where fraud.accountNumber = withdraw.accountNumber

i

Blocking Operations

Aggregation and Grouping

p A simple aggregate definition

Sums of the amounts every 5-seconds

select sum(amount)
from Withdrawal.win:time batch(5 sec)

p Computing aggregates with grouping

Accounts where the average withdrawal amount per account for
the last hour of withdrawals is greater then 1000

select account, avg(amount)

from Withdrawal.win:time(1l hour)
group by account

having amount > 1000

i

Ordering

p A simple ordering query

Batches of 5 or more stock tick events that are sorted first by
price ascending and then by volume descending:

select symbol

from StockTickEvent.win:time (60 sec)
output every 5 events

order by price, volume desc

Correlated Queries

p A simple correlated query

Get all Order events whose quantity is greater that the sum
of all the Order quantities over the last hour

select *

from OrderEvent oe

where gty >
(select sum(gty)
from OrderEvent.win:time(1l hour) pd
where pd.client = oe.client)

Insert and Remove Streams

Insert and remove streams

What should be result of the query that alerts all accounts that
have more that 2 withdrawals with the last 5 mins (of 1000

euro)?

select accnt no, count(*) as n withdrawals

from Withdrawal.win:time (5 min)
where amount > 1000
group by acct no

having count(*) = 2
| min <123,1100> —>» @ —>
"0
2 min <123,2000> —>» —>
3 min <123,3000> —>» —>

<123,2> J*

<128,2> |-

Insert and remove streams

p Sources, channels, operators and sinks must handle
positive (insert) and negative (remove) update
streams

p The semantics of all operators must be defined
accordingly

i

pjc@inesc-id.pt

http://web.tecnico.ulisboa.pt/paulo.carreira

i

