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Social Web



Smart Buildings



Smart Cities



Smart Meters



Smart Everything



Streaming data
!

‣ Arrives out of order	



!

‣ At varying frequency (sometime bursty)	



!

‣ Continuously arriving (infinite in nature)	



!

‣ Transient 



Social Web

!
!
“Which countries re-tweeted my messages the most 
over the last 8 hours?”



Smart Buildings

!
!
“Which rooms are consuming more energy?”



Smart Cities

!
!
“Which neighborhoods have lamps did not start?”



Smart Meters

!
!
“Which appliances are consuming most energy?”



Continuous Queries

‣ Continually evaluated whenever new information 
arrives

!

‣ Continually producing updates to their results



Streaming Data 
Applications

‣ Finance (real-time trading decisions)	



‣ Fraud detection	



‣ Business Intelligence	



‣ Building Automation	



‣ Assisted Living	



‣ Monitoring	



‣ ...



1.Motivation	



2.Stream Processing Fundamentals	



3.Querying Data Streams (by example)	



• Output control	



• Windowing	



• Blocking Operators	



• Insert and Remove Streams

Outline



Stream Processing 
Fundamentals



Stream Processing Systems
filters

channels

sinks

sources



Several Challenges

‣ Processing many events per second 
(thousands to millions)	



‣ Running thousands of queries	



‣ Detecting very complex event conditions	



‣ Minimization of the development effort (to 
setup a system that reacts to complex 
situations)	



‣ ...



Engineering Stream 
Processing Software

‣ Currently Stream Processing software is (still) 
developed ad-hoc	



‣ In the 1970s Database Management Systems 
detached applications from data storage and 
processing logic	



‣ By the 2000s Data Steam Management Systems 
promise to detach applications from streaming 
data processing logic



Database Management 
Systems

Query

user queries

Data Sinks

persistent 
store

Data is 
stored; 

!
Queries are 
run



Data Stream 
Management Systems

Query

user queries

Data Sources Data Sinks

Queries are 
stored; 

!
Data is run



Available DSMSs
‣ Research Systems 

- TelegraphCQ, COUGAR, Borealis, STREAMON	



‣ Commercial 

- Oracle 11g RT	



- (IBM DB2, Microsoft SQL-Server soon to follow)	



‣ Open Source 

- Esper,  Twitter Storm,  Apache S4, ...



DBMS vs DSMS
‣ DBMS	



- Queries are run when submitted and terminate	



- Data is pulled	



- Optimization occurs upfront (minimize IO effort)

‣ DSMS	



- Queries are installed and run continuously	



- Data is pushed	



- Optimization is dynamic (minimize latency)



Why are DSMS so great?

‣ Simplify the design of real-time data 
processing applications	



‣ Very efficient at processing a large number of 
queries over high data flow rates	



- >500K events/sec on dual CPU machine	



- 500 queries at an arrival rate of 1000 events/
sec (?)



Challenges
‣ Unbounded Memory: Queries require an 

unbounded amount of memory to evaluate 
precisely.	



- Approximate query processing 	



- Sliding window query processing 	



‣ High data-flow rate: Data arrives at a pace 
(multi-GB) that floods the CPU 	



- Sampling 	



- Data synopsis



Querying Data Streams  
(by example)



Events and Streams
‣ Event 

- An occurrence within a particular context	



- Refers to the real-world event and to its 
digital representation (data)	



‣ Stream 

- Abstracted as an append-only relation with 
transient tuples	



- Events on a given stream have similar 
structure known upfront



Continuous Queries
!

‣ Non-blocking Relational operators extend 
naturally to stream processing	



- Select, Project, Join are Relational	



- Therefore, SQL also extends naturally to 
stream processing	



!

‣ Blocking operators such as Grouping and 
Aggregation require specific operators to be 
introduced



Basic Continuous Query 
Block

select col_expr1, ..., col_exprn !
from stream_def!
where select_cond!
group by aggr_expr!
having having_cond!
order by ordering_expr!
output output_expr



The ‘Hello World’ example

select count(amount)!
from Withdrawal !
where amount > 3

The count of withdrawals of amounts greater than 3

7 5

8 5 7 1 4

2 7 9 1

1

51

8

4 3 2 1 1 0

72 7 9 1 51



Output control



Output Control

select count(amount)!
from Withdrawal !
where amount > 3!
output every 2 events

The count of withdrawals of amounts greater than 3, reported at 
every two events

7 5

8 5 7 1 4

2 7 9 1

1

51

8

4 2 1

72 7 9 1 51



Output Control

‣ The output clause specifies, when, how and at 
what rate the output is produced

output [after n [seconds | events]] !
  !
    [[all | first | last | snapshot] !
!
every output_rate [seconds | events]]



Output control

select sensorId !
from TemperatureSensorEvent !
output all every 10 seconds

The ids of all temperature sensor events every 10 seconds

select * !
from TemperatureSensor where temp<21 !
output first every 60 seconds

The first of a series temperature drops below 21C a the specified 
output rate

‣ Output at a fixed rate

‣ Partial output at fixed rate



Input Control



Windows

‣ Windows define a processing context that is 
updated incrementally	



!

‣ Type of windows:	



- Batch or Sliding	



- Based on length, based on time, or both



Window queries

select count(amount)!
Withdrawal.win:length(4)!
where amount > 3 !
output every 2 events

The count of withdrawals of amounts greater than 3, on a 
window of size 2, reported at every two events

7 5

8 5 6 1 4

2 7 9 1

1

51

8

3 1

72 7 9 1 51

2

select count(amount)!
Withdrawal.win:length(4) !
where amount > 3!
output snapshot every 2 events



Windows

select sum(amount) !
from Withdrawal.win:time(5 sec)

Sum of withdrawals at each 5 seconds (batch)

select sum(amount) !
from Withdrawal.win:time_batch(5 sec)

Sum of withdrawals over the last 5 seconds
‣ A sliding window definition

‣ A batch window definition



Joins

select fraud.accountNumber as accntNum, !
 fraud.warning as warn, withdraw.amount as amount,!

from FraudWarningEvent.win:time(1800) as fraud,!
     WithdrawalEvent.win:time(30) as withdraw!
where fraud.accountNumber = withdraw.accountNumber

‣ Joining two event streams

Which accounts under fraud surveillance have had a withdrawal 
in the last 30 seconds?

1. Fraud warning events stream for which we keep the last 30 
minutes (1800 seconds). !
!
2. Withdrawal events stream for which we consider the last 30 
seconds. !
!
The streams are joined on account number.



Blocking Operations



Aggregation and Grouping

select sum(amount)!
from Withdrawal.win:time_batch(5 sec)

select account, avg(amount)!
from Withdrawal.win:time(1 hour)!
group by account!
having amount > 1000

Accounts where the average withdrawal amount per account for 
the last hour of withdrawals is greater then 1000

Sums of the amounts every 5-seconds
‣ A simple aggregate definition

‣ Computing aggregates with grouping



Ordering

select symbol !
from StockTickEvent.win:time(60 sec)!
output every 5 events!
order by price, volume desc

Batches of 5 or more stock tick events that are sorted first by 
price ascending and then by volume descending:

‣ A simple ordering query



Correlated Queries

select * !
from OrderEvent oe!
where qty > !
  (select sum(qty) !
   from OrderEvent.win:time(1 hour) pd !
   where pd.client = oe.client)

Get all Order events whose quantity is greater that the sum 
of all the Order quantities over the last hour

‣ A simple correlated query



Insert and Remove Streams



Insert and remove streams
What should be result of the query that alerts all accounts that 
have more that 2 withdrawals with the last 5 mins (of 1000 
euro)?

select accnt_no, count(*) as n_withdrawals!
from Withdrawal.win:time(5 min)!
where amount > 1000 !
group by acct_no!
having count(*) = 2

<123, 1100> +1 min

<123, 2><123, 2000> +2 min U+

<123, 2>+3 min <123, 3000> U-



Insert and remove streams

- - - - - - - - - - - - - - - -
+ + + + + + + + + + + + + ++ +

‣ Sources, channels, operators and sinks must handle 
positive (insert) and negative (remove) update 
streams

‣ The semantics of all operators must be defined 
accordingly
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