
Data Stream Management Systems:
An introduction

DATA STORM Big Data Summer School	

Lisbon, July 14-16th

Paulo	
 Carreira	
 |	
 IST	
 &	
 INESC-­‐ID

Social Web

Smart Buildings

Smart Cities

Smart Meters

Smart Everything

Streaming data
!

‣ Arrives out of order	

!

‣ At varying frequency (sometime bursty)	

!

‣ Continuously arriving (infinite in nature)	

!

‣ Transient

Social Web

!
!
“Which countries re-tweeted my messages the most
over the last 8 hours?”

Smart Buildings

!
!
“Which rooms are consuming more energy?”

Smart Cities

!
!
“Which neighborhoods have lamps did not start?”

Smart Meters

!
!
“Which appliances are consuming most energy?”

Continuous Queries

‣ Continually evaluated whenever new information
arrives

!

‣ Continually producing updates to their results

Streaming Data
Applications

‣ Finance (real-time trading decisions)	

‣ Fraud detection	

‣ Business Intelligence	

‣ Building Automation	

‣ Assisted Living	

‣ Monitoring	

‣ ...

1.Motivation	

2.Stream Processing Fundamentals	

3.Querying Data Streams (by example)	

• Output control	

• Windowing	

• Blocking Operators	

• Insert and Remove Streams

Outline

Stream Processing
Fundamentals

Stream Processing Systems
filters

channels

sinks

sources

Several Challenges

‣ Processing many events per second
(thousands to millions)	

‣ Running thousands of queries	

‣ Detecting very complex event conditions	

‣ Minimization of the development effort (to
setup a system that reacts to complex
situations)	

‣ ...

Engineering Stream
Processing Software

‣ Currently Stream Processing software is (still)
developed ad-hoc	

‣ In the 1970s Database Management Systems
detached applications from data storage and
processing logic	

‣ By the 2000s Data Steam Management Systems
promise to detach applications from streaming
data processing logic

Database Management
Systems

Query

user queries

Data Sinks

persistent
store

Data is
stored;

!
Queries are
run

Data Stream
Management Systems

Query

user queries

Data Sources Data Sinks

Queries are
stored;

!
Data is run

Available DSMSs
‣ Research Systems

- TelegraphCQ, COUGAR, Borealis, STREAMON	

‣ Commercial

- Oracle 11g RT	

- (IBM DB2, Microsoft SQL-Server soon to follow)	

‣ Open Source

- Esper, Twitter Storm, Apache S4, ...

DBMS vs DSMS
‣ DBMS	

- Queries are run when submitted and terminate	

- Data is pulled	

- Optimization occurs upfront (minimize IO effort)

‣ DSMS	

- Queries are installed and run continuously	

- Data is pushed	

- Optimization is dynamic (minimize latency)

Why are DSMS so great?

‣ Simplify the design of real-time data
processing applications	

‣ Very efficient at processing a large number of
queries over high data flow rates	

- >500K events/sec on dual CPU machine	

- 500 queries at an arrival rate of 1000 events/
sec (?)

Challenges
‣ Unbounded Memory: Queries require an

unbounded amount of memory to evaluate
precisely.	

- Approximate query processing 	

- Sliding window query processing 	

‣ High data-flow rate: Data arrives at a pace
(multi-GB) that floods the CPU 	

- Sampling 	

- Data synopsis

Querying Data Streams
(by example)

Events and Streams
‣ Event

- An occurrence within a particular context	

- Refers to the real-world event and to its
digital representation (data)	

‣ Stream

- Abstracted as an append-only relation with
transient tuples	

- Events on a given stream have similar
structure known upfront

Continuous Queries
!

‣ Non-blocking Relational operators extend
naturally to stream processing	

- Select, Project, Join are Relational	

- Therefore, SQL also extends naturally to
stream processing	

!

‣ Blocking operators such as Grouping and
Aggregation require specific operators to be
introduced

Basic Continuous Query
Block

select col_expr1, ..., col_exprn !
from stream_def!
where select_cond!
group by aggr_expr!
having having_cond!
order by ordering_expr!
output output_expr

The ‘Hello World’ example

select count(amount)!
from Withdrawal !
where amount > 3

The count of withdrawals of amounts greater than 3

7 5

8 5 7 1 4

2 7 9 1

1

51

8

4 3 2 1 1 0

72 7 9 1 51

Output control

Output Control

select count(amount)!
from Withdrawal !
where amount > 3!
output every 2 events

The count of withdrawals of amounts greater than 3, reported at
every two events

7 5

8 5 7 1 4

2 7 9 1

1

51

8

4 2 1

72 7 9 1 51

Output Control

‣ The output clause specifies, when, how and at
what rate the output is produced

output [after n [seconds | events]] !
 !
 [[all | first | last | snapshot] !
!
every output_rate [seconds | events]]

Output control

select sensorId !
from TemperatureSensorEvent !
output all every 10 seconds

The ids of all temperature sensor events every 10 seconds

select * !
from TemperatureSensor where temp<21 !
output first every 60 seconds

The first of a series temperature drops below 21C a the specified
output rate

‣ Output at a fixed rate

‣ Partial output at fixed rate

Input Control

Windows

‣ Windows define a processing context that is
updated incrementally	

!

‣ Type of windows:	

- Batch or Sliding	

- Based on length, based on time, or both

Window queries

select count(amount)!
Withdrawal.win:length(4)!
where amount > 3 !
output every 2 events

The count of withdrawals of amounts greater than 3, on a
window of size 2, reported at every two events

7 5

8 5 6 1 4

2 7 9 1

1

51

8

3 1

72 7 9 1 51

2

select count(amount)!
Withdrawal.win:length(4) !
where amount > 3!
output snapshot every 2 events

Windows

select sum(amount) !
from Withdrawal.win:time(5 sec)

Sum of withdrawals at each 5 seconds (batch)

select sum(amount) !
from Withdrawal.win:time_batch(5 sec)

Sum of withdrawals over the last 5 seconds
‣ A sliding window definition

‣ A batch window definition

Joins

select fraud.accountNumber as accntNum, !
 fraud.warning as warn, withdraw.amount as amount,!

from FraudWarningEvent.win:time(1800) as fraud,!
 WithdrawalEvent.win:time(30) as withdraw!
where fraud.accountNumber = withdraw.accountNumber

‣ Joining two event streams

Which accounts under fraud surveillance have had a withdrawal
in the last 30 seconds?

1. Fraud warning events stream for which we keep the last 30
minutes (1800 seconds). !
!
2. Withdrawal events stream for which we consider the last 30
seconds. !
!
The streams are joined on account number.

Blocking Operations

Aggregation and Grouping

select sum(amount)!
from Withdrawal.win:time_batch(5 sec)

select account, avg(amount)!
from Withdrawal.win:time(1 hour)!
group by account!
having amount > 1000

Accounts where the average withdrawal amount per account for
the last hour of withdrawals is greater then 1000

Sums of the amounts every 5-seconds
‣ A simple aggregate definition

‣ Computing aggregates with grouping

Ordering

select symbol !
from StockTickEvent.win:time(60 sec)!
output every 5 events!
order by price, volume desc

Batches of 5 or more stock tick events that are sorted first by
price ascending and then by volume descending:

‣ A simple ordering query

Correlated Queries

select * !
from OrderEvent oe!
where qty > !
 (select sum(qty) !
 from OrderEvent.win:time(1 hour) pd !
 where pd.client = oe.client)

Get all Order events whose quantity is greater that the sum
of all the Order quantities over the last hour

‣ A simple correlated query

Insert and Remove Streams

Insert and remove streams
What should be result of the query that alerts all accounts that
have more that 2 withdrawals with the last 5 mins (of 1000
euro)?

select accnt_no, count(*) as n_withdrawals!
from Withdrawal.win:time(5 min)!
where amount > 1000 !
group by acct_no!
having count(*) = 2

<123, 1100> +1 min

<123, 2><123, 2000> +2 min U+

<123, 2>+3 min <123, 3000> U-

Insert and remove streams

- - - - - - - - - - - - - - - -
+ + + + + + + + + + + + + ++ +

‣ Sources, channels, operators and sinks must handle
positive (insert) and negative (remove) update
streams

‣ The semantics of all operators must be defined
accordingly

pjc@inesc-id.pt

http://web.tecnico.ulisboa.pt/paulo.carreira

